
1

package o
nce —

use every
where !

Cross-Platform
Multi-Instance
Unix Software
Packaging

Ralf S. Engelschall
rse@openpkg.org

Only those who attempt
the absurd can achieve
the impossible.

— Unknown

The best way to predict
the future is to invent it.

— Alan Kay

2.5 2006-03-19

2

Part I: Name Of The Game
What is the Problem?
Why Packaging at all?
Why Cross-Platform?

There are two types of people
in this world, good and bad.
The good sleep better, but the
bad seem to enjoy the waking
hours much more.

— Woody Allen

3

What is the Problem? (1)

� Cross-Platform:
How to manage different Unix
platforms without having to deal
with different vendor facilities?

� Trust:
How to trust any vendor unless
their whole project workflow and
results are public and
transparent?

� Organizational Separation:
How to achieve a clean
responsibility separation on
servers between System
Administrators and Application
Administrators/Developers?

� Bleeding Edge:
How to use a software just a
few hours after it was released
by the vendor?

� Package Variants:
How to deploy multiple variants
(build-time options) of a
software with an arbitrary
vendor packaging facility?

� Multiple Instances:
How to use staging installations
without having to buy additional
dedicated servers?

Understanding a problem is knowing why it is
hard to solve it, and why the most straightforward
approaches won't work. — Karl Popper

4

What is the Problem? (2)

� Sane Build Environment:
How to build packages in a sane
and well-defined environment?

� Unprivileged Packaging:
How to build binary packages
without write access to the
target filesystem area?

� Unprivileged Deployment:
How to use a software packaging
facility in a fully unprivileged
deployment environment?

� Building from Source:
How to reproduce a software
installation from pristine vendor
sources directly on the end-user
target machine?

� Conciseness/Cleanness:
How to trust the resulting binary
packages if the packaging itself
is not already known to be
maximum concise, clean and
reviewable?

� Safe Environment:
How to make sure that own
solutions are future safe by not
being too tied to a particular
underlying operating system?

It's not enough to be a great programmer;
you have to find a great problem.

— Charles Simonyi

5

Why Packaging at all? (1)

� Reproducibility:
Packaging allows to really
reproduce the resulting software
installation.

� Filesystem Intrusion:
Packaging allows to exactly
know what files form a piece of
software. Later removal is
possible without any residual
files.

� Scalability:
Packaging allows software
deployment to be independent
on the required number of
deployments.

� Unification:
Packaging unifies individual
approaches across application
vendors to simplify
administration.

� Problem Focusing:
Packaging allows to focus on
the problem (deployment and
configuration) instead of having
to fight (again and again)
against the porting and building
of vendor software.

� Cost Reduction:
Packaging reduces costs by no
longer requiring experts for
boring deployment tasks.
Instead their expertise can be
used for service improvements.“Reuse an expert's code” is the right advice for most

people. But it's useless advice for the experts writing
the code in the first place. — Dan J. Bernstein

6

Why Packaging at all? (2)

� Built-In Experience:
Packaging combines vendor
applications with pre-
configuration and packager
knowledge to create optimum
total result.

� Knowledge Consolidation:
Packaging allows central
consolidation of knowledge.

� Patch Maintenance:
Packaging allows you to keep
pristine vendor sources and
patches separate without
loosing seamless integration.

� Annotations:
Packaging annotates vendor
applications with useful meta
information for administration.

� Querying Information:
Packaging allows to reasonably
query information about the
application installation.

� Safe Upgrade Path:
Packaging allows a guaranteed
upgrade path for software during
the whole life of a system.

� Integrity Verification:
Packages can be signed and their
content integrity can be verified.

The reasonable man adapts himself to the world; the unreasonable one
persists in trying to adapt the world to himself. Therefore all progress
depends on the unreasonable man. — George Bernard Shaw

7

Why Cross-Platform? (1)
The Mountain Problem
� Different flavors of Unix

operating systems have to be
used and cannot be avoided.

� Differences in vendor supplied
add-on applications:
� Total number of applications.
� Third-party application

versions.
� Used filesystem layout.
� Particular chosen build-time

options.
� Amount of pre-configuration.

� Administrators have to know
how to manage n different
platforms.

kernel

base

Solaris

kernel

base

FreeBSD

kernel

base

Linux

??? ??? ???

Ad
d-

on
Ap

pl
ic

at
io

ns

user

There's a lesson to be learned from this
but I'll be damned if I know what it is.

— Al Bundy

8

Why Cross-Platform? (2)
The OpenPKG Solution
� Different flavors of Unix

operating systems are still
being used because cannot
be avoided.

� Vendor supplied
add-on applications are
deinstalled or at least
shadowed by OpenPKG.

� OpenPKG is a maximum
independent layer on top of
the operating system.

� All add-on applications are
provided as cross-platform
packages by OpenPKG.

� Administrators now just have
to know how to manage 1
unified platform.

kernel

base

Solaris

kernel

base

FreeBSD

kernel

base

Linux

Ad
d-

on
Ap

pl
ic

at
io

ns

user

OpenPKG

The software said it requires Solaris 9
or better, so I installed OpenPKG...

9

Part II: The Solution
The Solution: Overview
The Solution: Design Goals
Platform Availability
Platform Classification
Package Classification
Packaging Approaches

The solution of this problem
is left as an exercise to the reader.

10

The Solution:
Marketing Style
� OpenPKG — The Cross-Platform

Multi-Instance Unix Software
Packaging Facility.

� Much valued by IT decision makers
and beloved by Unix system
administrators, OpenPKG is the
world leading instrument for
deployment and maintenance of
Open Source software when
administration crosses Unix
platform boundaries.

� The unique OpenPKG architecture
leverages proven technologies like
Red Hat Package Manager (RPM)
and OSSP and GNU components to
establish a unified software
administration environment,
independent of the underlying Unix
operating system.
Software is like sex;
it's better when it's free.

— Linus Torvalds

11

The Solution:
Technology Style
� a cross-platform packaging

facility for Unix software.
� based on a ported, cleaned up

and extended version of the
popular Red Hat Package Manager
(RPM 4.2).

� a fully self-contained packaging
facility which is maximum
independent of underlying
operating system.

� minimum intrusion during linkage
into the underlying operating
system (just 6 connection points).

� very complete, i.e., it currently
provides already over 880
packaged applications.

� a mature technology now in
production use since 4 years.

� freely available to anyone as
Open Source under a MIT-style
distribution license.

� releases are provided three times
per year and the last two
releases are fully covered with
security updates.

LOAD "OPENPKG",8,1

12

The Solution:
Design Goals
� Design Goal 1:

Packaging at all
(keywords: complexity,
removability, reproducability,
scalability)

� Design Goal 2:
Cross-Platform
(keywords: inherent constraints,
flexibility, cost reducation)

� Design Goal 3:
Multiple Instances
(keywords: complexity, flexibility,
utilization, evaluation, staging)

� Design Goal 4:
Out-of-the-Box
Configuration
(keywords: minimum default,
maximum usability, experience
bundling)

� Design Goal 5:
Accuracy & Conciseness
(keywords: artwork, human
friendliness, maintainability)

� Design Goal 6:
Covering Essentials Only
(keywords: “best of”, quality not
quantity, major Unix flavors)

� Design Goal 7:
Open Source Licensing
(keywords: “free as in freedom, not
as in free beer”)

Good design means less design.
Design must serve users,
not try to fool them.

— Dieter Rams,
Chief Designer, BRAUN

I'd like to thank all the little
people who helped make this
possible, but I can't, because I
did it all myself.

— Herman Monster

13

The Solution:
“Big Picture”
� In the Classic approach, addon

OS vendor packages plus
manually installed software
provide services.

� In the OpenPKG approach, an
OpenPKG Base instance extends
the OS Base installation and
dedicated OpenPKG instances
provide services.

OS1 Base

OS1 Addon

ManualManual

HW1 HW2

OS2 Base

OS2 Addon

OS1 Base

OpenPKG
Base

HW1 HW2

OS2 Base

OpenPKG
Base

ManualManual

S
er

ve
r

Sp
ec

ifi
c

S
er

vi
ce

Sp
ec

ifi
c

Classic Approach OpenPKG Approach

O
pe

nP
KG

 A
dd

on

O
pe

nP
KG

 A
dd

on

...

O
pe

nP
KG

 A
dd

on

O
pe

nP
KG

 A
dd

on

...

The killer for
system administration!

We the unwilling,
led by the unknowing,
are doing the impossible.

— Larry Wall

14

Platform Availability

� OpenPKG is officially available
for mainly 3 Unix platform
technologies:
� FreeBSD
� GNU/Linux
� Sun Solaris

� OpenPKG is officially available
for 21 particular platform
products (as of OpenPKG 2.3)

� For every release, all
packages are built on all
platforms.

� FreeBSD
� FreeBSD 4.11 (iX86)
� FreeBSD 5.3 (iX86)
� FreeBSD 5.3 (SPARC64)
� FreeBSD 5.3 (IA64)
� FreeBSD 6.0 (iX86)

� GNU/Linux
� Debian GNU/Linux 3.0 (iX86)
� Debian GNU/Linux 3.1-PRE (iX86)
� RedHat Enterprise Linux 3 (iX86)
� Fedora Core 3 (iX86)
� SuSE Enterprise Linux 9 (iX86)
� SuSE Linux 9.2 (iX86)
� Gentoo Linux 1.6.9 (iX86)
� Mandrake Linux 10.1 (iX86)

� Sun Solaris
� Sun Solaris 8 (SPARC64)
� Sun Solaris 9 (iX86)
� Sun Solaris 9 (SPARC64)
� Sun Solaris 10 (ix86)
� Sun Solaris 10 (SPARC)

� Others
� NetBSD 2.0 (iX86)
� HP HP-UX 11.11i (HPPA)
� Apple Darwin 7.8 (PPC)

It’s hard to teach
old dogs new tricks.

15

Platform Classification

� OpenPKG platforms are
classified into 5 categories:
� deprecated
� obsolete
� supported
� tentative
� forecasted

unixware
tru64

ix86-freebsd5.3
ix86-freebsd4.11
ix86-debian3.0
ix86-fedora3
ix86-rhel3
ix86-suse9.2
ix86-suse9
sparc64-solaris8
ix86-solaris9
sparc64-solaris9
ix86-solaris10
sparc64-solaris10

ix86-freebsd6.0
ia64-freebsd5.3
sparc64-freebsd5.3
ix86-gentoo1.6.9
ix86-debian3.1
ix86-mandrake10.1
ix86-netbsd2.0
ppc-darwin7.8.0
hppa-hpux11.11

aix
irix

deprecated obsolete supported tentative forecasted

� As the name implies, only
“supported” platforms are really
officially supported!

� Availability on “obsolete” platforms
is still provided for convenience
reasons only.

� Availability on “tentative” platforms
is already provided for early adopter
and testing reasons.

Reporter: What do you think of Western Civilization?
Ghandhi: I think, it would be a good idea.

16

Package Classification

� OpenPKG packages are
classified into 5 categories:
� CORE, BASE, PLUS
� EVAL, JUNK

� Classification of a package
depends on:
� CORE, BASE: decision by

principal architect.
� PLUS: decision by principal

architect and package status.
� EVAL, JUNK: package status.

� The upper half of the
“iceberg” (CORE, BASE
and PLUS) make up the
official releases.

� PLUS packages are
going in and out as
neccessary during
release engineering.

CORE BASE PLUS EVAL JUNK

Packaging Completed X X X X -
Build-Time Tests Successful X X X ? -
Run-Time Tests Successful X X (X) ? -
Release: Showstopper X X - - -
Release: Source Package X X X - -
Release: Binary Package X X - - -
Security Engineering X X (X) - -

4%
CORE

BASE

PLUS

EVAL

JUNK

27%

37%

30%

2%

"If builders built buildings the way programmers wrote programs,
then the first woodpecker that came along would destroy civilization."

— Weinberg's second law

17

Packaging Approaches:
Source vs. Binary
� There are two fundamentally

different approaches for
packaging-based software
distributions:
� providing source packages

containing the vendor sources
plus instructions for automated
build and installation.

� providing binary packages
containing the final installation
files only.

� Most packaging facilities support
both approaches (including
RPM), although often not equally
well.

� Both approaches have each their
pros and cons, nevertheless all
software distributions focus on
one of them.

� OpenPKG is focused on source
packages because of the proofed
success of reproducably building
from prestine vendor sources.

� In OpenPKG, binary packages are
just an intermediate temporary
result (or used for bootstrapping
and emergency situations) only.

source
package

binary
package

distribution size ☺☺☺ ///
package size . ☺
package
dependencies

// .

installation
reproducability

/ ☺☺☺

installation
run-time stability

☺☺ /

installation
system alignment

☺☺☺ /

installation time // ☺☺Beware of programmers
who carry screwdrivers.

— Leonard Brandwein

18

Part III: About Project
Project Roots
Project Roadmap
Engineering Phases
Who’s Who?

A distributed system is one on
which I cannot get any work done,
because a machine I have never
heard of has crashed.

— Leslie Lamport

19

About Project:
The Roots
� OpenPKG dates back in concept

to 1992 when Ralf S. Engelschall
(RSE) developed his Build’n’Play
(BnP) and GenOPT at sd&m
(sdm.de).

� BnP was a Perl based build
environment for easy
installation of Unix software on
FreeBSD and Sun Solaris.

� GenOPT was a complex shell
script which allowed to link the
locally installed software into a
global access layer.

� When in November 2000 RSE
went to Cable & Wireless
(cw.com) the BnP/GenOPT
approach was not sufficient and
a more complete and integrated
solution was aspired.

� In-depth evaluation of major
packaging facilities showed that
none was able to fulfill all(!)
requirements.

� Fortunately, RPM proved to be
the most balanced solution,
because it covers at least 80%
of every(!) requirement.

� RPM was chosen, ported to
more non-RedHat-Linux
platforms and embedded into a
elaborate bootstrapping
procedure.

� On top of this, the first dozen
RPM packages were developed
by converting the BnP Perl/sh
scripts to RPM Bash scripts.

� OpenPKG 0.9 was born!

Premature optimization
is the root of all evil.

— D. E. Knuth

20

OpenPKG RPM:
PM Requirements
� The OpenPKG project had the

following major requirements to
the Package Manager:
� The PM has to be maximum

portable to all major Unix
platforms and require the
minimum on other software.

� The PM has to cover the full
life-cycle of a package, starting
from tracking the vendor
sources to the residue-free
deinstallation of the installed
package.

� The PM has to be flexible
enough to be easily extensible
with OpenPKG extensions.

� The PM has to be driven with a
single all-in-one package
specification and through a
integrated command line
interface.

� The OpenPKG project evaluated
(in Nov. 2000) the following PM
implementations:
� FreeBSD 4.x Ports/pkg_xxx
� Debian 2.2 dpkg/Apt
� Sun Solaris 8 pkgxxx
� RedHat RPM 4.0

� OpenPKG chose RedHat RPM
because
� it covered already 80% of all

OpenPKG requirements.
� the remaining 20% were added

easily by OpenPKG.

� As of OpenPKG 2.3, the RPM
4.2.1 extensions are about
� 9500 LoC shell extensions
� 5000 LoC C patches
� 450 LoC macro additions
� 150 LoC CLI aliases

Engineering does not require
science. Science helps a lot, but
people built perfectly good brick
walls long before they knew why
cement works. — Alan Cox

21

About Project:
The Roadmap
� As of April 2005, OpenPKG

already went through 8 official
releases since 2001.

� Release Engineering is
performed within 4-6 weeks
every 4 months in order to
ship 3 releases per year.

� Security Engineering is
performed constantly for the
last 2 releases.

� OpenPKG-CURRENT is
constantly updated on a bi-
daily basis with the latest
vendor versions.

Date Milestone

Nov-2000 OpenPKG project kick-off
Apr-2001 OpenPKG 0.9, C&W deployment
Jan-2002 OpenPKG 1.0
Mar-2002 feature: {s,m,r,n}{usr,grp}
Jun-2002 feature: sane build environment

Apr-2003 feature: GCC 3.3, RC work-off

Jan-2003 feature: UUID, %track/Class, tag

May-2004 feature: OpenPKG Tool Chain, gcc 3.4
Jun-2004 OpenPKG 2.1
Oct-2004 OpenPKG 2.2
Feb-2005 OpenPKG 2.3
Mar-2005 OpenPKG Foundation e.V., SpaceNet

Oct-2005 OpenPKG 2.5
Dec-2005 OpenPKG GmbH, OpenPKG Registry
Mar-2006 OpenPKG Websites 2.0

Jun-2005 OpenPKG 2.4

Jun-2006 OpenPKG 2.6

Dec-2002 feature: %option

Aug-2002 OpenPKG 1.1
Nov-2002 feature: RDF, openpkg-tool, FSL

Jan-2003 OpenPKG 1.2

Aug-2003 OpenPKG 1.3
Oct-2003 feature: RPM 4.2.1, platform

Feb-2004 OpenPKG 2.0

... ...

Some people have entirely too
much free time on their hands.

— Gene Spafford

22

About Project:
Engineering Phases
� There are three types of

recurring and overlapping
phases in OpenPKG:
� Development (Dev)
� Release Engineering (RE)
� Security Engineering (SE)

� Development Phase:
implement new features, major
changes, work-off packaging, ...

� Release Engineering Phase:
fix building of packages, prepare
release documents, ...

� Security Engineering Phase:
ongoing effort to track security
issues, backport and prepare
patches, write security
advisories, ...

R R

R

Jan

Feb

Mar

Apr

May

JunJul

Aug

Sep

Oct

Nov

Dec

RE

RE

RE Dev

Dev

Dev

SE

SE SE

Recursive, adj.;
see Recursive.

23

Engineering Phases:
Release Engineering
� Release Engineering is the

recurring procedure where a new
OpenPKG release is made.

� The frequency of 4 months is a
balance between...
� making the latest vendor software

versions available for production
environments.

� providing a stable and consistent
set of packages.

� able to support risk free security
updates for existing installations.

� allow reproducable installations
through fixated package versions.

� having a limited amount of
sponsored and contributed
manpower and resources
available.

� The Release Engineering steps
mainly involve:
� updating the OpenPKG build

farm to the latest OS vendor
versions/patchlevels.

� fixing all CORE/BASE/PLUS
packages to work on all
supported platforms.

� blessing EVAL class packages
for PLUS class if they work on
all platforms in order to
increase release extend.

� rolling the source and binary
package distribution on all
platforms for CORE/BASE/PLUS.

� quality testing the packages.
� updating documentation and

publically publishing the results.

A new release is where old bad assumptions
are replaced by new bad assumptions.

24

Engineering Phases:
Security Engineering
� Security Engineering is an

important task in OpenPKG
because every release has a life-
time (usually 8 months).

� During the release life-time,
existing installations are
maintained with on-demand
security updates.

� Deploying an OpenPKG security
update is risk free, i.e., the user
is guaranteed that no
incompatible functional change or
even new feature exists in any
release update packages.

� The OpenPKG project achieves
this by fully back-porting security
fixes to the actually packaged
vendor version. There is no
simple vendor version upgrade
made.

� The OpenPKG community is
informed through public security
advisories, summarizing the
security issue and providing
detailed information about
affected releases and package
versions.

� The OpenPKG project
participates in closed vendor
forums to get earliest possible
notifications about security
issues and to share own
informations with other vendors.

� As a result of the ongoing
OpenPKG security engineering
process, the community gets
security fixes as fast as possible.
The only secure computer is one that's
unplugged, locked in a safe, and buried 20 feet
under the ground in a secret location... and
I'm not even too sure about that one.

— Dennis Huges, FBI.

25

Who’s Who? (1)
Ralf S. Engelschall
� Person Details:

� Name: Ralf S. Engelschall
� Born: November 17th, 1972
� Nationality: German
� Status: married, 2 children
� Profession: Computer Scientist
� Experience: 18 years of computing

� Ralf S. Engelschall is the
founder and principal architect
of the OpenPKG project.

� He is the author of about
90% of all OpenPKG
packages.

� Together with the
OpenPKG Foundation he
holds the copyright on
OpenPKG.

� He is also founder and
president of the OpenPKG
Foundation e.V.

� His other well-known Open
Source Software achievements:
� founder, principal architect

and author of OSSP.
� co-founder and developer at

OpenSSL.
� founder and author of Apache

mod_ssl, author of Apache
mod_rewrite, mod_dso and
APACI.

� developer at FreeBSD.

A hacker does for
love what others
would not do for
money.

Ralf S. Engelschall
rse@engelschall.com
rse.engelschall.com

26

Who’s Who? (2)
OpenPKG Foundation e.V.
� The social community around

OpenPKG forms up in the
OpenPKG Foundation e.V.
http://www.openpkg.net/

� Excerpt from the Foundation
constitution: “Intention of the
OpenPKG Foundation e.V. is the
ideational, financial, material
and manned support of the
Open Software Project
OpenPKG.”

� The OpenPKG Foundation is a
non-profit organisation,
founded 2005 by Ralf S.
Engelschall, Thomas Lotterer
and OpenPKG developers.

� The OpenPKG Foundation is
established as an association
under German law and
regulated by a registered
association constitution and
companion bylaws following
democratic rules.

When I was a boy I was told anybody
can become president. I’m beginning to
believe it... — Clarence Darrow

Teamwork is essential:
There is always one you can blame it on.

27

� Since 2005, the primary
sponsors of OpenPKG are:
� OpenPKG Foundation e.V.

http://www.openpkg.net/
providing human resources
and hardware resources.

� SpaceNet AG
http://www.space.net/
providing hosting resources
and network resources.

� In addition to the development
efforts provided individuals
during their free time, the
OpenPKG project is backed by
sponsors from the IT industry.

� The sponsors mainly provide:
� human resources (man-power)
� hardware resources (servers)
� hosting resources (datacenter)
� network resources (Internet)

� Between 1992 and 2000, the
primary sponsor of OpenPKG’s
predecessors was sd&m.
http://www.sdm.de/

� Between 2000 and 2005, the
primary sponsor of OpenPKG
was Cable & Wireless.
http://www.cw.com/

If a trainstation is where trains
stop, what is a workstation?

Who’s Who? (3)
Sponsors

28

Part IV: User Perspectives
OpenPKG RPM Crash-Course
OpenPKG Live (Demonstration)
Package Lifecycle

A supercomputer is
a machine, that runs an
endless loop in just 2
seconds.

29

OpenPKG RPM
Crash-Course
� Bootstrapping Instance:

$ sh openpkg-*.src.sh
$ sh openpkg-*.*-*.sh

� Installing Packages:
$ openpkg rpm –rebuild \
foo-*.src.rpm

openpkg rpm -Uvh \
foo-*.*-*.rpm

� Starting/Stopping Services:
openpkg rc foo stop start
openpkg rc foo status

� Removing Packages:
openpkg rpm -e foo

� Removing Instance:
openpkg rpm -e `openpkg rpm \
-q --whatrequires openpkg`

openpkg rpm -e openpkg

� Query Information:
$ openpkg rpm –qa
$ openpkg rpm -qi foo
$ openpkg rpm -qlv foo
$ openpkg rpm –qf \
/path/to/file

$ openpkg rpm -qpi \
foo-*.rpm

$ openpkg rpm –qp \
--requires foo-*.rpm

� Verify Integrity:
openpkg rpm -V foo
openpkg rpm –Va

� Reading RPM Manual:
$ openpkg man rpm

Everybody falls the first time.
It doesn't mean anything.

— The Matrix

30

OpenPKG Live (1)

$ TMPDIR=/var/tmp; export TMPDIR; cd $TMPDIR
$ ftp ftp.openpkg.org
Connected to ftp.openpkg.org.
220 ftp.openpkg.org OpenPKG Anonymous FTP Server ready.
Name (ftp.openpkg.org): anonymous
331 Anonymous login ok, send your email address as password.
Password: you@example.com
230- [...] Welcome to OpenPKG.org! [...]
230 Anonymous access granted, restrictions apply.
ftp> bin
200 Type set to I.
ftp> cd release/2.5/SRC
ftp> get openpkg-2.5.0-2.5.0.src.sh
ftp> bye
221 Goodbye.
$ sh ./openpkg-2.5.0-2.5.0.src.sh --tag=opkg \

--prefix=/usr/opkg –-user=opkg –-group=opkg
OpenPKG 2.5-RELEASE Source Bootstrap Package, version 2.5.0
Building for prefix /usr/opkg on current platform
++ extracting OpenPKG source distribution
++ building OpenPKG binary distribution
[...]
$ ls –l openpkg-*
-rw-r--r-- 1 foo foo 18558976 Oct 20 10:20 openpkg-2.5.0-2.5.0.src.sh
-rw-r--r-- 1 foo foo 16997568 Oct 20 10:20 openpkg-2.5.0-2.5.0.src.rpm
-rw-r--r-- 1 foo foo 6230016 Oct 20 10:20 openpkg-2.5.0-2.5.0.ix86-freebsd5.4-opkg.sh
-rw-r--r-- 1 foo foo 5989118 Oct 20 10:20 openpkg-2.5.0-2.5.0.ix86-freebsd5.4-opkg.rpm
$ _

� Build binary from source bootstrap package

“The idea is to fall
and miss the ground.”

— Douglas Adams,
A Hitchhiker's Guide to the galaxy.

31

OpenPKG Live (2)

$ su –
Password: *****
sh ./openpkg-2.5.0-2.5.0.ix86-freebsd5.4-opkg.sh
OpenPKG 2.5-RELEASE Binary Bootstrap Package, version 2.5.0
Built for prefix /tmp/openpkg on target platform ix86-freebsd5.4
++ hooking OpenPKG instance into system environment
++ creating OpenPKG instance root directory "/usr/opkg"
[...]
exit
$ ls –l /usr/opkg
-rw-r--r-- 1 opkg opkg 911 Oct 20 10:20 README
drwxr-xr-x 6 opkg opkg 512 Oct 20 10:20 RPM
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 bin
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 cgi
drwxr-xr-x 4 opkg opkg 512 Oct 20 10:20 etc
drwxr-xr-x 3 opkg opkg 512 Oct 20 10:20 include
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 info
drwxr-xr-x 3 opkg opkg 512 Oct 20 10:20 lib
drwxr-xr-x 3 opkg opkg 512 Oct 20 10:20 libexec
drwxr-xr-x 10 opkg opkg 512 Oct 20 10:20 local
drwxr-xr-x 20 opkg opkg 512 Oct 20 10:20 man
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 pub
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 sbin
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 share
drwxr-xr-x 2 opkg opkg 512 Oct 20 10:20 var
$ /usr/opkg/bin/openpkg rpm –qa
openpkg-2.5.0-2.5.0
gpg-pubkey-63c4cb9f-3c591eda
$ _

� Install binary bootstrap package to create instance

A computer scientist is
someone who fixes things
that aren't broken.

32

OpenPKG Live (3)

$ /usr/opkg/bin/openpkg rpm –-rebuild \
ftp://ftp.openpkg.org/release/2.5/SRC/bash-3.0.16-2.5.0.src.rpm

Installing ftp://ftp.openpkg.org/release/2.5/SRC/bash-3.0.16-2.5.0.src.rpm
[...]
Wrote: /usr/opkg/RPM/PKG/bash-3.0.16-2.5.0.ix86-freebsd5.4-opkg.rpm
$ su –
/usr/opkg/bin/openpkg rpm –Uvh \

/usr/opkg/RPM/PKG/bash-3.0.16-2.5.0.ix86-freebsd5.4-opkg.rpm
Preparing... ### [100%]

1:bash ### [100%]
exit
$ /usr/opkg/bin/openpkg rpm –qlv bash
-rwxr-xr-x 1 opkg opkg 539068 Oct 20 10:20 /usr/opkg/bin/bash
drwxr-xr-x 2 opkg opkg 0 Oct 20 10:20 /usr/opkg/etc/bash
-rw-r--r-- 1 opkg opkg 2756 Oct 20 10:20 /usr/opkg/etc/bash/profile
-rw-r--r-- 1 opkg opkg 342251 Oct 20 10:20 /usr/opkg/info/bash.info
-rw-r--r-- 1 opkg opkg 228383 Oct 20 10:20 /usr/opkg/man/man1/bash.1
$ /usr/opkg/bin/openpkg rpm -qi bash
Name: bash Source RPM: bash-3.0.16-2.5.0.src.rpm
Version: 3.0.16 Signature: md5:e943b1ae7004def2baa91563341ad9d3
Release: 2.5.0 Build Host: foo.example.com
Group: Shell Build System: ix86-freebsd5.4
Class: CORE Build Time: Wed Oct 20 10:20:00 2005
Distrib: OpenPKG Install Time: Wed Oct 20 10:20:30 2005
License: GPL Install Size: 1112458 bytes
Packager: The OpenPKG Project Relocations: /usr/opkg
Vendor: Free Software Foundation
[...]
$ _

� Install OpenPKG package for GNU Bash (example)

Seek simplicity but distrust it.
— A. N. Whitehead

33

Package Lifecycle (1)

� The lifecycle of a package is the
most important part to
understand in OpenPKG.

� In OpenPKG, the lifecycle is an
extended RPM package lifecycle
because of extensions to RPM.

� The lifecycle consists of
overlapping steps performed by
two parties:
� OpenPKG developers

creating packages.
� OpenPKG administrators

deploying packages.

� The developer performs most of
the administrator steps during
build-time and run-time testing.

� The administrator repeats some
of the developer steps during
building from source.

Evaluation of
application

Edit RPM
Specification

(.spec)

Commit RPM
Specification

to CVS

Checkout RPM
Specification

from CVS

Fetch Vendor
Sources

Roll Source RPM
Package

Store Source
RPM into

Repository

Fetch Source
RPM from
Repository

Unpack
Source RPM

Unpack Vendor
Sources

Configure & Build
Application

Install
Application

Store Binary
RPM into

Repository

Roll Binary RPM
Package

Fetch Binary
RPM from
Repository

Install
Application

into Instance

Remove
Application

from Instance

upgrade

END

BEGIN

Track Vendor
Sources

You can check out any time you
like, but you can never leave.

— The Eagles, Hotel California

34

Evaluation of
application

Edit RPM
Specification

(.spec)

Commit RPM
Specification

to CVS

Checkout RPM
Specification

from CVS

Fetch Vendor
Sources

Roll Source RPM
Package

Store Source
RPM into

Repository

Fetch Source
RPM from
Repository

Unpack
Source RPM

Unpack Vendor
Sources

Configure & Build
Application

Install
Application

Store Binary
RPM into

Repository

Roll Binary RPM
Package

Fetch Binary
RPM from
Repository

Install
Application

into Instance

Remove
Application

from Instance

upgrade

END

BEGIN

Track Vendor
Sources

Package Lifecycle (2)

My hack: This universe.
Just one little problem:
core keeps dumping.

developer
administrator

35

Part V: Developer Perspectives
Package Components
Package Specification
Package Building
Development: Version Tracking
Development: CVS Repository
Development: Build Farm

Computer science is no more
about computers than astronomy
is about telescopes.

— E. W. Dijkstra

36

-rw-r--r-- 1 rse openpkg 6162 Mar 27 09:14 bash.spec
-rw-r--r-- 1 rse openpkg 5305 Jan 23 13:47 bash.patch
-rw-r--r-- 1 rse openpkg 2752 Feb 18 11:30 profile
-rw-r--r-- 1 rse openpkg 1956216 Feb 24 23:02 bash-3.0.tar.gz
-rw-r--r-- 1 rse openpkg 1132 Feb 24 23:02 bash30-001
-rw-r--r-- 1 rse openpkg 755 Feb 24 23:02 bash30-002
-rw-r--r-- 1 rse openpkg 2356 Feb 24 23:02 bash30-003
-rw-r--r-- 1 rse openpkg 1110 Feb 24 23:02 bash30-004
-rw-r--r-- 1 rse openpkg 2217 Feb 24 23:02 bash30-005
-rw-r--r-- 1 rse openpkg 3155 Feb 24 23:02 bash30-006
-rw-r--r-- 1 rse openpkg 1072 Feb 24 23:02 bash30-007

: : : : : : :

Package Components

� Package Specification:
� central OpenPKG RPM

packaging information
(name.spec)

� Vendor Sources:
� vendor tarball

(name-version.tar.gz)
� vendor patches

(name-version.patch)

� Extra Packaging Files
� packager or third-party patches

(name.patch[.tag])
� run-command scripts,

FSL configurations, etc.
(rc.name, fsl.name)

� default configuration files
(name.conf, ...)

� ... “UNIX is simple.
It just takes a genius to
understand its simplicity.”

— Dennis Ritchie

37

%build
configure package
(# force disabled wide-character support

echo "ac_cv_header_wchar_h=no"
echo "ac_cv_header_wctype_h=no"
echo "ac_cv_func_mbsrtowcs=no"
force disabled internationalization support
echo "ac_cv_header_libintl_h=no"
echo "ac_cv_func_gettext=no"
echo "ac_cv_func_textdomain=no"
echo "ac_cv_func_bindtextdomain=no"
echo "ac_cv_lib_intl_bindtextdomain=no"

) >config.cache
CC="%{l_cc}" \
CFLAGS="%{l_cflags -O}" \
./configure \

--cache-file=./config.cache \
--prefix=%{l_prefix} \
--without-gnu-malloc \
--without-curses

%{l_shtool} subst \
-e 's;^\(#define.*SYS_PROFILE["^]*\).*;\1 "%{l_prefix}/etc/bash/profile";' \
pathnames.h

%{l_shtool} subst \
-e 's;/etc/profile;%{l_prefix}/etc/bash/profile;' \
doc/bash.1

build package
%{l_make} %{l_mflags}

%install
install package
rm -rf $RPM_BUILD_ROOT
%{l_make} %{l_mflags} install \

prefix=$RPM_BUILD_ROOT%{l_prefix}

strip down installation
rm -f $RPM_BUILD_ROOT%{l_prefix}/info/dir
rm -f $RPM_BUILD_ROOT%{l_prefix}/man/man1/bashbug.1
rm -f $RPM_BUILD_ROOT%{l_prefix}/bin/bashbug
strip $RPM_BUILD_ROOT%{l_prefix}/bin/bash

install global configuration
%{l_shtool} mkdir -f -p -m 755 \

$RPM_BUILD_ROOT%{l_prefix}/etc/bash
%{l_shtool} install -c -m 644 %{l_value -s -a} \

%{SOURCE profile} $RPM_BUILD_ROOT%{l_prefix}/etc/bash/

determine installation files
%{l_rpmtool} files -v -ofiles -r$RPM_BUILD_ROOT \

%{l_files_std} \
'%config %{l_prefix}/etc/bash/profile'

%files -f files

%clean
rm -rf $RPM_BUILD_ROOT

%post
if [".$1" = .1]; then

display note about login shell prerequisite
if [-f /etc/shells]; then

if [".`grep $RPM_INSTALL_PREFIX/bin/bash /etc/shells`" = .]; then
(echo "Hint: To use $RPM_INSTALL_PREFIX/bin/bash as the login"

echo "shell for users, please add this path to /etc/shells."
) | %{l_rpmtool} msg -b -t notice

fi
fi

fi

Package Specification (1)
� Every OpenPKG RPM

package specification
follows exactly the same
structure and is strictly
checked syntactically.

� The section ordering is:
� macro defines
� package headers
� package options
� source references
� package dependencies
� package description
� version tracking
� build preparation
� configuration & building
� installation
� file determination
� cleanup
� deploy-time scripting

package version
%define V_base_real 3.0
%define V_base_comp 30
%define V_plvl_raw 13
%define V_plvl_pad 013

package information
Name: bash
Summary: Bourne-Again Shell
URL: http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html
Vendor: Free Software Foundation
Packager: The OpenPKG Project
Distribution: OpenPKG
Class: CORE
Group: Shell
License: GPL
Version: %{V_base_real}.%{V_plvl_raw}
Release: 2.2.0

list of sources
Source0: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}.tar.gz
Source1: profile
Patch0: bash.patch
Patch1: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-001
Patch2: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-002
Patch3: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-003
Patch4: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-004
Patch5: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-005
Patch6: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-006
Patch7: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-007
Patch8: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-008
Patch9: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-009
Patch10: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-0107
Patch11: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-0117
Patch12: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-012
Patch13: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-013

build information
Prefix: %{l_prefix}
BuildRoot: %{l_buildroot}
BuildPreReq: OpenPKG, openpkg >= 20040130
PreReq: OpenPKG, openpkg >= 20040130
AutoReq: no
AutoReqProv: no

%description
Bash (Bourne-Again Shell) is an sh-compatible command language interpreter
that executes commands read from the standard input or from a file. Bash
also incorporates useful features from the Korn and C shells (ksh and csh).
Bash is intended to be a conformant implementation of the IEEE POSIX Shell
and Tools specification (IEEE Working Group 1003.2).

%track
prog bash = {

version = %{V_base_real}
url = ftp://ftp.cwru.edu/pub/bash/
regex = bash-(__VER__)\.tar\.gz

}
prog bash:patches = {

version = %{V_base_comp}-%{V_plvl_pad}
url = ftp://ftp.cwru.edu/pub/bash/
regex = (bash-\d+\.\d+[a-z]+-patches)
url = ftp://ftp.cwru.edu/pub/bash/__NEWVER__/
regex = bash(\S+-\d+)

}

%prep
%setup -q -n bash-%{V_base_real}
%patch -p0 -P 0 1 2 3 4 5 6 7 8 9 10 11 12 13
%{l_shtool} subst \

-e 's;@l_openpkg_release@;%{l_openpkg_release};' \
version.c

Politics is for the moment,
an equation lasts eternity.

— Albert Einstein

38

package version
%define V_base_real 3.0
%define V_base_comp 30
%define V_plvl_raw 16
%define V_plvl_pad 016

package information
Name: bash
Summary: Bourne-Again Shell
URL: http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html
Vendor: Free Software Foundation
Packager: The OpenPKG Project
Distribution: OpenPKG
Class: CORE
Group: Shell
License: GPL
Version: %{V_base_real}.%{V_plvl_raw}
Release: 2.5.0

list of sources
Source0: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}.tar.gz
Source1: profile
Patch0: bash.patch
Patch1: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-001
Patch2: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-002
Patch3: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-003
... ...
Patch15: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-015
Patch16: ftp://ftp.cwru.edu/pub/bash/bash-%{V_base_real}-patches/bash%{V_base_comp}-016

build information
Prefix: %{l_prefix}
BuildRoot: %{l_buildroot}
BuildPreReq: OpenPKG, openpkg >= 2.5.0
PreReq: OpenPKG, openpkg >= 2.5.0
AutoReq: no

Package Specification (2)
� In detail: Defines, Headers, Sources, Dependencies

What you see
is all you get.
— Brian Kernighan

39

%description
Bash (Bourne-Again Shell) is an sh-compatible command language interpreter
that executes commands read from the standard input or from a file. Bash
also incorporates useful features from the Korn and C shells (ksh and csh).
Bash is intended to be a conformant implementation of the IEEE POSIX Shell
and Tools specification (IEEE Working Group 1003.2).

%track
prog bash = {

version = %{V_base_real}
url = ftp://ftp.cwru.edu/pub/bash/
regex = bash-(__VER__)\.tar\.gz

}
prog bash:patches = {

version = %{V_base_comp}-%{V_plvl_pad}
url = ftp://ftp.cwru.edu/pub/bash/
regex = (bash-\d+\.\d+[a-z]+-patches)
url = ftp://ftp.cwru.edu/pub/bash/__NEWVER__/
regex = bash(\S+-\d+)

}

%prep
unpack and patch distribution
%setup -q -n bash-%{V_base_real}
%patch -p0 -P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

brand with OpenPKG release and fix patchlevel
%{l_shtool} subst \

-e 's;@l_openpkg_release@;%{l_openpkg_release};' \
version.c

%{l_shtool} subst \
-e 's;\(PATCHLEVEL\) 0;\1 %{V_plvl_raw};' \
patchlevel.h

Package Specification (3)
� In detail: Description, Tracking, Preparation

Beware of bugs in
the above code;
I have only proved it
correct, not tried it.

— D.E. Knuth

40

%build
configure package
(# force disabled wide-character support

echo "ac_cv_header_wchar_h=no"
echo "ac_cv_header_wctype_h=no"
echo "ac_cv_func_mbsrtowcs=no"
force disabled internationalization support
echo "ac_cv_header_libintl_h=no"
echo "ac_cv_func_gettext=no"
echo "ac_cv_func_textdomain=no"
echo "ac_cv_func_bindtextdomain=no"
echo "ac_cv_lib_intl_bindtextdomain=no"

) >config.cache
CC="%{l_cc}" \
CFLAGS="%{l_cflags -O}" \
./configure \

--cache-file=./config.cache \
--prefix=%{l_prefix} \
--disable-multibyte \
--enable-debugger \
--without-gnu-malloc \
--without-curses \
--disable-nls

%{l_shtool} subst \
-e 's;^\(#define.*SYS_PROFILE["^]*\).*;\1 "%{l_prefix}/etc/bash/profile";' \
pathnames.h

%{l_shtool} subst \
-e 's;/etc/profile;%{l_prefix}/etc/bash/profile;' \
doc/bash.1

build package
%{l_make} %{l_mflags}

Package Specification (4)
� In detail: Configuration and Building

Try to understand everything,
but believe nothing!

41

%install
install package
rm -rf $RPM_BUILD_ROOT
%{l_make} %{l_mflags} install \

prefix=$RPM_BUILD_ROOT%{l_prefix}

strip down installation
rm -f $RPM_BUILD_ROOT%{l_prefix}/info/dir
rm -f $RPM_BUILD_ROOT%{l_prefix}/man/man1/bashbug.1
rm -f $RPM_BUILD_ROOT%{l_prefix}/bin/bashbug
strip $RPM_BUILD_ROOT%{l_prefix}/bin/bash

install global configuration
%{l_shtool} mkdir -f -p -m 755 \

$RPM_BUILD_ROOT%{l_prefix}/etc/bash
%{l_shtool} install -c -m 644 %{l_value -s -a} \

%{SOURCE profile} $RPM_BUILD_ROOT%{l_prefix}/etc/bash/

determine installation files
%{l_rpmtool} files -v -ofiles -r$RPM_BUILD_ROOT \

%{l_files_std} \
'%config %{l_prefix}/etc/bash/profile'

%files -f files

%clean
rm -rf $RPM_BUILD_ROOT

Package Specification (5)

The number of UNIX installations
has grown to 10, with more expected.
— The UNIX Programmer's Manual,

2nd Edition, June, 1972

� In detail: Installation, File Determination, Cleanup

42

%post
if [".$1" = .1]; then

display note about login shell prerequisite
if [-f /etc/shells]; then

if [".`grep $RPM_INSTALL_PREFIX/bin/bash /etc/shells`" = .]; then
(echo "Hint: To use $RPM_INSTALL_PREFIX/bin/bash as the login"

echo "shell for users, please add this path to /etc/shells."
) | %{l_rpmtool} msg -b -t notice

fi
fi

fi

Package Specification (6)
� In detail: Post-Installation Processing

I conclude that there are two ways of
constructing a software design: One
way is to make it so simple that there
are obviously no deficiencies and the
other way is to make it so complicated
that there are no obvious deficiencies.

— C.A.R.Hoare

43

Package Build-Time Compile Directory
%{_tmpdir}/%{name}-%{version}/

${l_prefix}/RPM/TMP/%{name}-%{version}/
$RPM_BUILD_DIR/

/openpkg/RPM/TMP/foo-1.2

Package Specification Directory
%{_specdir}/

%{l_prefix}/RPM/SRC/%{name}/
($RPM_SOURCE_DIR)

/openpkg/RPM/SRC/foo/

Package Binary RPM Directory
%{_rpmdir}/

%{l_prefix}/RPM/PKG/
--

/openpkg/RPM/PKG/

Package Source Directory
%{_sourcedir}/

%{l_prefix}/RPM/SRC/%{name}/
$RPM_SOURCE_DIR/

/openpkg/RPM/SRC/foo/

Package Source RPM Directory
%{_srcrpmdir}/

%{l_prefix}/RPM/PKG/
--

/openpkg/RPM/PKG/

Package Build-Time Install Directory
%{_tmpdir}/%{name}-%{version}-root/

${l_prefix}/RPM/TMP/%{name}-%{version}-root/
$RPM_BUILD_ROOT/

/openpkg/RPM/TMP/foo-1.2-root

Package Install-Time Install Directory
--

${l_prefix}/
$RPM_INSTALL_PREFIX/

/openpkg/

rpm -ba

rpm -bc –short-circuit
%build

rpm -bp
%prep

rpm -bi –short-circuit
%install

rpm -bb

rpm -bs rpm -i foo-*.src.rpm

rpm -bb –short-circuit
%files

rpm -i foo-*.*-*-*.rpm

rpm -F foo-*.*-*-*.rpm

rpm -e foo

+

Package Building:
RPM Control/Data Flow

Patient: Doctor, it hurts when I do this!
Doctor: Well, then don't do it.

44

Development:
Version Tracking
� OpenPKG RPM supports a custom

section %track which contains
vcheck(1) configurations.

� A vcheck(1) configuration is:
� last known version
� URL where the versions are

referenced
� regular expression how the

versions can be extracted from
the text under the URL

� All 800 OpenPKG packages
contain a %track section for
checking all external source files
of a package.

� On a bi-daily basis all %track
sections are executed and a
report sent to the OpenPKG
developers.

� See also: openpkg-dev@openpkg.org

Life is just a beta-version.
Don't expect it to be bug-free.

45

Development:
CVS Repository
� All sources of OpenPKG are

stored in a central CVS based
repository system.

� Every “Commit” to the
repository is real-time tracked
both with detailed reports via
Email and on-line via CVSTrac.

� Every OpenPKG release is an
own “branch” in the repository.

� See also:
http://cvs.openpkg.org/
openpkg-cvs@openpkg.org

Murphy's Law is recursive:
Washing your car to make
it rain doesn't work.

46

47

Development:
Build Farm
� OpenPKG packages are constantly

tested on a large set of different
platforms.

� For this a “build farm” is used
(provided by the OpenPKG
Foundation e.V.), consisting of
machines which constantly fetch
the latest OpenPKG-CURRENT and
try to build changed packages.

� The result is a status page on the
website which shows the latest
status of each package on each
platform.

� The developers watch this status
page to see where something has
to be fixed.

� See also:
http://www.openpkg.org/status.cgi

The goal of science is to build better mousetraps.
The goal of nature is to build better mice.

48

Part VI: Some Gory Details
The “Bootstrap” (Package)
Run-Command Facility (RC)
OSSP fsl (Faking Syslog Library)

A diplomat is someone
who can tell you to go to hell
in such a way that you will
look forward to the trip.

49

The “Bootstrap” (Package)

� OpenPKG technically consists of
the essential “openpkg” RPM
package plus 880 other RPM
packages based on it.

� The “openpkg” package is called
“the bootstrap” because it is
� both a regular RPM package

containing the RPM framework
� and a elaborate bootstrapping

procedure able to install itself
with itself from scratch.

� This way OpenPKG RPM is
100% packaged by itself and
especially is able to upgrade its
RPM framework with itself.

� The bootstrapping works by...
� emulating a minimum functional

subset of RPM with a shell
script.

� building and installing the
“openpkg” package content
with the RPM emulation into a
temporary area.

� faking the rebuild and in-place
re-installation of the “openpkg”
package with the RPM from the
temporary area in order to
record RPM into its own RPM
database.

� rolling a bootstrapping binary
shell script and binary RPM
package from the temporary
area.

All the good things
you want to do in your life
have to be started in the next
few hours, days or weeks.

— Tom DeMarco

50

Run-Command Facility (1)
Overview
� OpenPKG provides a flexible and

integrated Run-Command (RC)
facility.

� The OpenPKG RC facility is...
� based on ideas from the NetBSD

1.6 and FreeBSD 5 RC facility
(no run-levels, rc.d/ directory,
dependencies, shared RC shell
functions, rc.conf
functionality, etc).

� designed with a RPM-style script
sectioning syntax (e.g. %start)
and an all-in-one specification
approach for seamless
integration into the RPM scope.

� integrates both
startup/shutdown (boot!) and
periodic (cron!) run-command
functionality.

� A run-command script in
OpenPKG RPM and RC is always
a GNU Bash script, independent
of the underlying platform.

� As a result, for a particular
packaged application...
� the OpenPKG RPM package

specification covers the
build-time and install-time
run-commands.

� the OpenPKG RC package
specification covers the
run-time run-commands.

� The OpenPKG RC facility
consists of:
� prefix/etc/rc
� prefix/etc/rc.func
� prefix/etc/rc.conf
� prefix/etc/rc.d/rc.packageTo me Vi is Zen. To use Vi is to practice Zen. Every command

is a Koan. Profound to the user, unintelligible to the uninitiated.
You discover truth everytime you use it. — Achim Bohnet

51

Run-Command Facility (2)
Gory Details
� Command Line Interface:

openpkg rc package command
� The package argument is

� either foo (particular package).
� or all (all packages at once).

� The command argument is an
arbitrary command
orresponding to a “%command”
section in rc.package.

� The following commands are
well-known and implemented by
all packages with rc.package:
status start stop

� Other well-known sections:
restart reload
quarterly hourly daily
weekly monthly

� Two special sections exist:
� %config: contains defaults for

configuration variables which
can be overridden from rc.conf

� %common: contains run-
commands common to all other
sections (except %config)

� Running prefix/bin/openpkg
rc foo start runs a GNU
Bash script assembled from
� %config sections from all

prefix/etc/rc.d/rc.*
� sourcing of

prefix/etc/rc.conf
� %common section from

prefix/etc/rc.d/rc.foo
� %start section from

prefix/etc/rc.d/rc.foo

52

OSSP fsl
(Faking Syslog Library)
� An inherent design goal of

OpenPKG is to support multiple
instances.

� Major problems with multiple
installations of the same
application are
� the listening to the network

address/port.
� the logging via the central

syslog(3) facility.

� Conflicts on network listening
most of the time can be solved
easily by just re-configuring the
application.

� Syslog(3) usage in multiple
installations of the same
application usually results in
merged logfile entries in the
central logfiles.

� OpenPKG solves the syslog(3)
problem with OSSP fsl, a faking
syslog(3) library.

� OSSP fsl emulates the syslog(3)
API but instead of sending the
log message to syslogd(8) it is
sending it through a tree of
chained channels.

� The tree of chained channels
can be configured individually
for each application through
pattern matching in prefix/etc/
fsl/fsl.package.

� OpenPKG by default links all
applications using syslog(3)
against OSSP fsl and directs
their log messages to logfiles
staying inside their OpenPKG
instance (usually prefix/var/
package/package.log)

53

Part VII: Finish
More about OpenPKG...

The Apache Group: a collection of
talented individuals who are trying to
perfect the art of never finishing
something.

— Rob Hartill

54

More about OpenPKG...

I have made this longer than usual
because I lack the time to make it
shorter. — Blaise Pascal

� The Website:
http://www.openpkg.org/

� The FTP Server:
ftp://ftp.openpkg.org/

� The RSYNC Server:
rsync://rsync.openpkg.org/

� The CVS Server:
http://cvs.openpkg.org/

� The OpenPGP Key Server:
http://pgp.openpkg.org/
hkp://pgp.openpkg.org/

� The Community Mailing Lists:
openpkg-announce@openpkg.org
openpkg-users@openpkg.org
openpkg-dev@openpkg.org
openpkg-cvs@openpkg.org

	Cross-Platform�Multi-Instance�Unix Software�Packaging
	Part I: Name Of The Game
	What is the Problem? (1)
	What is the Problem? (2)
	Why Packaging at all? (1)
	Why Packaging at all? (2)
	Why Cross-Platform? (1)�The Mountain Problem
	Why Cross-Platform? (2)�The OpenPKG Solution
	Part II: The Solution
	The Solution:�Marketing Style
	The Solution:�Technology Style
	The Solution:�Design Goals
	The Solution:�“Big Picture”
	Platform Availability
	Platform Classification
	Package Classification
	Packaging Approaches:�Source vs. Binary
	Part III: About Project
	About Project:�The Roots
	OpenPKG RPM:�PM Requirements
	About Project:�The Roadmap
	About Project:�Engineering Phases
	Engineering Phases:�Release Engineering
	Engineering Phases:�Security Engineering
	Who’s Who? (1)�Ralf S. Engelschall
	Who’s Who? (2)�OpenPKG Foundation e.V.
	Who’s Who? (3)�Sponsors
	Part IV: User Perspectives
	OpenPKG RPM�Crash-Course
	OpenPKG Live (1)
	OpenPKG Live (2)
	OpenPKG Live (3)
	Package Lifecycle (1)
	Package Lifecycle (2)
	Part V: Developer Perspectives
	Package Components
	Package Specification (1)
	Package Specification (2)
	Package Specification (3)
	Package Specification (4)
	Package Specification (5)
	Package Specification (6)
	Package Building:�RPM Control/Data Flow
	Development:�Version Tracking
	Development:�CVS Repository
	Development:�Build Farm
	Part VI: Some Gory Details
	The “Bootstrap” (Package)
	Run-Command Facility (1)�Overview
	Run-Command Facility (2)�Gory Details
	OSSP fsl�(Faking Syslog Library)
	Part VII: Finish
	More about OpenPKG...

